Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emergent Mater ; 4(1): 265-277, 2021.
Article in English | MEDLINE | ID: covidwho-938654

ABSTRACT

In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.

2.
Med Hypotheses ; 144: 110033, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-623792

ABSTRACT

At the end of 2019, the entire world has witnessed the birth of a new member of coronavirus family in Wuhan, China. Ever since, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has swiftly invaded every corner on the planet. By the end of April 2020, almost 3.5 million cases have been reported worldwide, with a death toll of about 250,000 deaths. It is currently well-recognized that patient's immune response plays a pivotal role in the pathogenesis of Coronavirus Disease 2019 (COVID-19). This inflammatory element was evidenced by its elevated mediators that, in severe cases, reach their peak in a cytokine storm. Together with the reported markers of liver injury, such hyperinflammatory state may trigger significant derangements in hepatic cytochrome P450 metabolic machinery, and subsequent modulation of drug clearance that may result in unexpected therapeutic/toxic response. We hypothesize that COVID-19 patients are potentially vulnerable to a significant disease-drug interaction, and therefore, suitable dosing guidelines with therapeutic drug monitoring should be implemented to assure optimal clinical outcomes.


Subject(s)
COVID-19 Drug Treatment , Cytochrome P-450 Enzyme System/chemistry , Drug Interactions , Aged , Animals , COVID-19/metabolism , Comorbidity , Cytokines/metabolism , Drug Monitoring , Humans , Inflammation , Interleukin-6/genetics , Liver/injuries , Liver/metabolism , Mice , Mice, Knockout , Treatment Outcome , Vulnerable Populations
SELECTION OF CITATIONS
SEARCH DETAIL